Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Pediatr Obes ; 19(6): e13120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590200

ABSTRACT

Maternal obesity is a well-known risk factor for developing premature obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes in the progeny. The development of white adipose tissue is a dynamic process that starts during prenatal life: fat depots laid down in utero are associated with the proportion of fat in children later on. How early this programming takes place is still unknown. However, recent evidence shows that mesenchymal stem cells (MSC), the embryonic adipocyte precursor cells, show signatures of the early setting of an adipogenic committed phenotype when exposed to maternal obesity. This review aims to present current findings on the cellular adaptations of MSCs from the offspring of women with obesity and how the metabolic environment of MSCs could affect the early commitment towards adipocytes. In conclusion, maternal obesity can induce early programming of fetal adipose tissue by conditioning MSCs. These cells have higher expression of adipogenic markers, altered insulin signalling and mitochondrial performance, compared to MSCs of neonates from lean pregnancies. Fetal MSCs imprinting by maternal obesity could help explain the increased risk of childhood obesity and development of further noncommunicable diseases.


Subject(s)
Mesenchymal Stem Cells , Obesity, Maternal , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Obesity, Maternal/metabolism , Adipose Tissue , Pediatric Obesity , Adipogenesis/physiology , Infant, Newborn , Adipocytes
2.
ACS Chem Neurosci ; 15(6): 1074-1083, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38421943

ABSTRACT

About 5% of pregnant women are treated with selective serotonin reuptake inhibitor (SSRI) antidepressants to treat their depression. SSRIs influence serotonin levels, a key factor in neural embryonic development, and their use during pregnancy has been associated with adverse effects on the developing embryo. However, the role of the placenta in transmitting these negative effects is not well understood. In this study, we aim to elucidate how disturbances in the maternal serotonergic system affect the villous tissue of the placenta by assessing whole transcriptomes in the placentas of women with healthy pregnancies and women with depression and treated with the SSRI fluoxetine during pregnancy. Twelve placentas of the Biology, Affect, Stress, Imaging and Cognition in Pregnancy and the Puerperium (BASIC) project were selected for RNA sequencing to examine differentially expressed genes: six male infants and six female infants, equally distributed over women treated with SSRI and without SSRI treatment. Our results show that more genes in the placenta of male infants show changed expression associated with fluoxetine treatment than in placentas of female infants, stressing the importance of sex-specific analyses. In addition, we identified genes related to extracellular matrix organization to be significantly enriched in placentas of male infants born to women treated with fluoxetine. It remains to be established whether the differentially expressed genes that we found to be associated with SSRI treatment are the result of the SSRI treatment itself, the underlying depression, or a combination of the two.


Subject(s)
Prenatal Exposure Delayed Effects , Selective Serotonin Reuptake Inhibitors , Infant , Female , Humans , Male , Pregnancy , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Pregnant Women , Transcriptome , Placenta/metabolism , Gene Expression Profiling , Prenatal Exposure Delayed Effects/metabolism
3.
Front Mol Neurosci ; 16: 1211373, 2023.
Article in English | MEDLINE | ID: mdl-37790884

ABSTRACT

Introduction: Germinal Matrix-Intraventricular Haemorrhage (GM-IVH) is one of the most common neurological complications in preterm infants, which can lead to accumulation of cerebrospinal fluid (CSF) and is a major cause of severe neurodevelopmental impairment in preterm infants. However, the pathophysiological mechanisms triggered by GM-IVH are poorly understood. Analyzing the CSF that accumulates following IVH may allow the molecular signaling and intracellular communication that contributes to pathogenesis to be elucidated. Growing evidence suggests that miRs, due to their key role in gene expression, have a significant utility as new therapeutics and biomarkers. Methods: The levels of 2,083 microRNAs (miRs) in 15 CSF samples from 10 infants with IVH were measured using miRNA whole transcriptome sequencing. Gene ontology (GO) and miR family analysis were used to uncover dysregulated signalling which were then validated in vitro in human foetal neural progenitor cells treated with IVH-CSF. Results: Five hundred eighty-seven miRs were differentially expressed in the CSF extracted at least 2 months after injury, compared to CSF extracted within the first month of injury. GO uncovered key pathways targeted by differentially expressed miRs including the MAPK cascade and the JAK/STAT pathway. Astrogliosis is known to occur in preterm infants, and we hypothesized that this could be due to abnormal CSF-miR signaling resulting in dysregulation of the JAK/STAT pathway - a key controller of astrocyte differentiation. We then confirmed that treatment with IVH-CSF promotes astrocyte differentiation from human fetal NPCs and that this effect could be prevented by JAK/STAT inhibition. Taken together, our results provide novel insights into the CSF/NPCs crosstalk following perinatal brain injury and reveal novel targets to improve neurodevelopmental outcomes in preterm infants.

4.
ACS Cent Sci ; 9(9): 1784-1798, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37780363

ABSTRACT

Cumulus granulosa cells (cGCs) and mural granulosa cells (mGCs), although derived from the same precursors, are anatomically and functionally heterogeneous. They are critical for female fertility by supporting oocyte competence and follicular development. There are various techniques used to investigate the role of free radicals in mGCs and cCGs. Yet, temporospatial resolution remains a challenge. We used a quantum sensing approach to study free radical generation at nanoscale in cGCs and mGCs isolated from women undergoing oocyte retrieval during in vitro fertilization (IVF). Cells were incubated with bare fluorescent nanodiamonds (FNDs) or mitochondria targeted FNDs to detect free radicals in the cytoplasm and mitochondria. After inducing oxidative stress with menadione, we continued to detect free radical generation for 30 min. We observed an increase in free radical generation in cGCs and mGCs from 10 min on. Although cytoplasmic and mitochondrial free radical levels are indistinguishable in the physiological state in both cGCs and mGCs, the free radical changes measured in mitochondria were significantly larger in both cell types, suggesting mitochondria are sites of free radical generation. Furthermore, we observed later occurrence and a smaller percentage of cytoplasmic free radical change in cGCs, indicating that cGCs may be more resistant to oxidative stress.

5.
Early Hum Dev ; 186: 105868, 2023 11.
Article in English | MEDLINE | ID: mdl-37797474

ABSTRACT

BACKGROUND: Stress exposure during Neonatal Intensive Care Unit (NICU) stay may have long-lasting effects on neurodevelopmental outcomes in extremely preterm infants. Altered DNA methylation of stress-related and neurodevelopmentally relevant genes may be an underlying mechanism. AIMS: This exploratory study aimed to investigate the association between neonatal stress exposure and DNA methylation in these genes at two different time points: early during the NICU stay (7-14 days after birth) and later, at discharge from the NICU. SUBJECTS: We included 45 extremely preterm infants in this prospective cohort study, gestational age 24-30 weeks. OUTCOME MEASURES: We collected fecal samples at days 7-14 (n = 44) and discharge (n = 28) and determined DNA methylation status in predefined regions of NR3C1, SLC6A4, HSD11B2, OPRM1, SLC7A5, SLC1A2, IGF2, NNAT, BDNF and GABRA6 using pyrosequencing. Because of low DNA concentrations in some fecal samples, we could do so in 25-50 % of collected samples. We prospectively quantified daily neonatal stress exposure using the Neonatal Infant Stressor Scale (NISS) and explored associations between cumulative NISS scores and average DNA methylation status. RESULTS: Rates of methylation of most genes were not statistically different between day 7-14 and discharge, except for OPRM1. We found moderately high and mostly negative correlation coefficients upon discharge with the cumulative NISS for the NR3C1, SLC6A4, SLC1A2, IGF2, BDNF and OPRM1 genes, albeit not statistically significant. CONCLUSIONS: Findings suggest that expression of stress-related and neurodevelopmentally relevant genes may be differently regulated following higher neonatal stress exposure. Larger studies should challenge the findings of this study and ideally test the effects on gene expression.


Subject(s)
Brain-Derived Neurotrophic Factor , DNA Methylation , Infant , Infant, Newborn , Humans , Prospective Studies , Brain-Derived Neurotrophic Factor/genetics , Infant, Extremely Premature , Gestational Age , Intensive Care Units, Neonatal , Serotonin Plasma Membrane Transport Proteins/genetics
6.
Epigenomics ; 15(8): 479-486, 2023 04.
Article in English | MEDLINE | ID: mdl-37309586

ABSTRACT

Background: Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in preterm infants. Epigenetic changes in DNA methylation may be present prior to NEC onset. Methods: 24 preterm infants with NEC and 45 matched controls were included. Human DNA was isolated from stool samples and methylation of CTDSPL2, HERC1, NXPE3 and PTGDR was measured using pyrosequencing. Results: CTDSPL2 displayed a higher DNA methylation of 51% compared with 17% in controls, prior to NEC onset (p = 0.047). Discussion: Noninvasive measurement of methylation in stool allows for comparison with healthy preterm controls. This potentially allows future biomarker or risk predictor use. The effect of CTDSPL2 hypermethylation on gene expression remains unclear.


What is this article about? Necrotizing enterocolitis (NEC) is a common emergency condition affecting the gastrointestinal system of preterm infants. Epigenetic changes in DNA methylation may be present in infants before the onset of NEC. DNA methylation is a natural process that can help turn genes on or off, thereby affecting their function. This study focused on measuring the amount of DNA methylation in certain genes in preterm infants who developed NEC. What were the results? This study included 24 preterm infants with NEC and 45 matched healthy controls. The researchers isolated human DNA from stool samples, and the amount of DNA methylation of four specific genes was measured. They found that one of the genes, CTDSPL2, had significantly higher DNA methylation in infants who later developed NEC than in healthy infants. What do the results of the study mean? In this study, researchers found that CTDSPL2 showed a higher level of DNA methylation in stool samples of infants who later developed NEC. The effect of this change remains unclear, but may affect the way cells grow and respond to injury or infection, which could contribute to the development of NEC. Measuring DNA methylation in stool samples provides a noninvasive method for identifying DNA methylation changes in preterm infants. Comparing the amount of DNA methylation in healthy infants with that in preterm infants at risk of NEC may help predict the risk of developing NEC.


Subject(s)
Enterocolitis, Necrotizing , Infant, Premature , Humans , Infant , Infant, Newborn , DNA Methylation , Enterocolitis, Necrotizing/genetics , Feces
7.
Pediatr Res ; 94(4): 1365-1372, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37208432

ABSTRACT

BACKGROUND: In preterm infants, intestinal hypoxia may partly contribute to the pathophysiology of necrotizing enterocolitis through changes in gene expression. Splanchnic hypoxia can be detected with monitoring of regional splanchnic oxygen saturation (rsSO2). Using a piglet model of asphyxia, we aimed to correlate changes in rsSO2 to gene expression. METHODS: Forty-two newborn piglets were randomized to control or intervention groups. Intervention groups were subjected to hypoxia until they were acidotic and hypotensive. Next, they were reoxygenated for 30 min according to randomization, i.e., 21% O2, 100% O2, or 100% O2 for 3 min followed by 21% O2, and observed for 9 h. We continuously measured rsSO2 and calculated mean rsSO2 and variability of rsSO2 (rsCoVar = SD/mean). Samples of terminal ileum were analyzed for mRNA expression of selected genes related to inflammation, erythropoiesis, fatty acid metabolism, and apoptosis. RESULTS: The expression of selected genes was not significantly different between control and intervention groups. No associations between mean rsSO2 and gene expression were observed. However, lower rsCoVar was associated with the upregulation of apoptotic genes and the downregulation of inflammatory genes (P < 0.05). CONCLUSION: Our study suggests that hypoxia and reoxygenation cause reduced vascular adaptability, which seems to be associated with the upregulation of apoptosis and downregulation of inflammation. IMPACT: Our results provide important insight into the (patho)physiological significance of changes in the variability of rsSO2. Our findings may advance future research and clinical practice regarding resuscitation strategies of preterm infants.


Subject(s)
Hypoxia , Infant, Premature , Animals , Humans , Infant, Newborn , Animals, Newborn , Gene Expression , Inflammation/complications , Intestines , Oxygen , Swine , Random Allocation , Disease Models, Animal
8.
Int J Mol Sci ; 24(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37108049

ABSTRACT

Fetal adaptations to harmful intrauterine environments due to pregnancy disorders such as preeclampsia (PE) can negatively program the offspring's metabolism, resulting in long-term metabolic changes. PE is characterized by increased circulating levels of sFLT1, placental dysfunction and fetal growth restriction (FGR). Here we examine the consequences of systemic human sFLT1 overexpression in transgenic PE/FGR mice on the offspring's metabolic phenotype. Histological and molecular analyses of fetal and offspring livers as well as examinations of offspring serum hormones were performed. At 18.5 dpc, sFLT1 overexpression resulted in growth-restricted fetuses with a reduced liver weight, combined with reduced hepatic glycogen storage and histological signs of hemorrhages and hepatocyte apoptosis. This was further associated with altered gene expression of the molecules involved in fatty acid and glucose/glycogen metabolism. In most analyzed features males were more affected than females. The postnatal follow-up revealed an increased weight gain of male PE offspring, and increased serum levels of Insulin and Leptin. This was associated with changes in hepatic gene expression regulating fatty acid and glucose metabolism in male PE offspring. To conclude, our results indicate that sFLT1-related PE/FGR in mice leads to altered fetal liver development, which might result in an adverse metabolic pre-programming of the offspring, specifically targeting males. This could be linked to the known sex differences seen in PE pregnancies in human.


Subject(s)
Pre-Eclampsia , Humans , Pregnancy , Mice , Female , Male , Animals , Pre-Eclampsia/metabolism , Placenta/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Fetus/metabolism , Mice, Transgenic , Weight Gain , Fetal Growth Retardation/genetics
9.
J Dev Orig Health Dis ; 14(1): 146-151, 2023 02.
Article in English | MEDLINE | ID: mdl-35748176

ABSTRACT

Exposure to pregnancy complications, including preeclampsia (PE), has lifelong influences on offspring's health. We have previously reported that experimental PE, induced in mice by administration of adenoviral sFlt1 at gestational day 8.5 combined with LPS at day 10.5, results in symmetrical growth restriction in female and asymmetrical growth restriction in male offspring. Here, we characterize the molecular phenotype of the fetal brain and liver with respect to gene transcription and DNA methylation at the end of gestation.In fetal brain and liver, expression and DNA methylation of several key regulatory genes is altered by PE exposure, mostly independent of fetal sex. These alterations point toward a decreased gluconeogenesis in the liver and stimulated neurogenesis in the brain, potentially affecting long-term brain and liver function. The observed sex-specific growth restriction pattern is not reflected in the molecular data, showing that PE, rather than tissue growth, drives the molecular phenotype of PE-exposed offspring.


Subject(s)
DNA Methylation , Pre-Eclampsia , Animals , Female , Humans , Male , Mice , Pregnancy , Brain/metabolism , Gene Expression , Liver/metabolism , Pre-Eclampsia/genetics , Vascular Endothelial Growth Factor Receptor-1
10.
Oxid Med Cell Longev ; 2022: 1070968, 2022.
Article in English | MEDLINE | ID: mdl-36466095

ABSTRACT

Ovarian aging is associated with a decrease in fecundity. Increased oxidative stress of granulosa cells (GCs) is an important contributor. We thus asked whether there is an oxidative stress-related gene signature in GCs associated with ovarian aging. Public nonhuman primate (NHP) single-cell transcriptome was processed to identify GC cluster. Then, a GC signature for ovarian aging was established based on six oxidative stress-related differentially expressed genes (MAPK1, STK24, AREG, ATG7, ANXA1, and PON2). Receiver operating characteristic (ROC) analysis confirmed good discriminating capacity in both NHP single-cell and human bulk transcriptome datasets. Gene expression levels were investigated using qPCR in the human ovarian granulosa-like tumor cell line (KGN) and mouse GCs. In an oxidative stress model, KGN cells were treated with menadione (7.5 µM, 24 h) to induce oxidative stress, after which upregulation of MAPK1, STK24, ATG7, ANXA1, and PON2 and downregulation of AREG were observed (p < 0.05). In an aging model, KGN cells were continuously cultured for 3 months, leading to increased expressions of all genes (p < 0.05). In GCs of reproductively aged (8-month-old) Kunming mice, upregulated expression of Mapk1, Stk24, Atg7, and Pon2 and downregulated expression of Anxa1 and Areg were observed (p < 0.01). We therefore here identify a six-gene GC signature associated with oxidative stress and ovarian aging.


Subject(s)
Granulosa Cells , Ovary , Female , Humans , Mice , Animals , Infant , Oxidative Stress/genetics , Aging/genetics , Vitamin K 3 , Protein Serine-Threonine Kinases
11.
Clin Epigenetics ; 14(1): 170, 2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36503539

ABSTRACT

BACKGROUND: Dystonia is a rare movement disorder, in which patients suffer from involuntary twisting movements or abnormal posturing. Next to these motor symptoms, patients have a high prevalence of psychiatric comorbidity, suggesting a role for serotonin in its pathophysiology. This study investigates the percentage of DNA methylation of the gene encoding for the serotonin reuptake transporter (SLC6A4) in dystonia patients and the associations between methylation levels and presence and severity of psychiatric symptoms. METHODS: Patients with cervical dystonia (n = 49), myoclonus dystonia (n = 41) and dopa-responsive dystonia (DRD) (n = 27) and a group of healthy controls (n = 56) were included. Psychiatric comorbidity was evaluated with validated questionnaires. Methylation levels of 20 CpG sites situated 69 to 213 base pairs upstream of the start codon of SLC6A4 were investigated. Methylation in dystonia patients was compared to healthy controls, correcting for age, and correlated with psychiatric comorbidity. RESULTS: Bootstrapped quantile regression analysis showed that being a dystonia patient compared to a healthy control significantly explains the methylation level at two CpG sites (CpG 24: pseudo-R2 = 0.05, p = 0.04, CpG 32: pseudo-R2 = 0.14, p = 0.03). Subgroup analysis revealed that being a DRD patient significantly explained a part of the variance of methylation levels at two CpG sites (CpG 21: pseudo-R2 = 0.03, p = 0.00, CpG 24: pseudo-R2 = 0.06, p = 0.03). Regression analysis showed that methylation level at CpG 38 significantly explained a small proportion of the variance of severity score for anxiety (R2 = 0.07, p = 0.04) and having a diagnosis of depression (Nagelkerke R2: 0.11, p = 0.00). Genotype of the 5-HTTLPR polymorphism had no additional effect on these associations. CONCLUSIONS: This study showed an association between percentage of methylation at several specific sites of the promoter region of SLCA64 and (dopa-responsive) dystonia patients compared to healthy controls. Furthermore, methylation levels were associated with severity of anxiety and presence of a depressive disorder in the dystonia group. This study suggests alterations in the serotonergic metabolism in dystonia patients, and its relation with the non-motor symptoms.


Subject(s)
Dystonia , Dystonic Disorders , Humans , DNA Methylation , Serotonin , Dystonia/genetics , Dystonia/complications , Dystonic Disorders/complications , Dystonic Disorders/genetics , Serotonin Plasma Membrane Transport Proteins/genetics
12.
Front Endocrinol (Lausanne) ; 13: 895489, 2022.
Article in English | MEDLINE | ID: mdl-36046788

ABSTRACT

Background: Pre-diabetes precedes Diabetes Mellitus (DM) disease and is a critical period for hyperglycemia treatment, especially for menopausal women, considering all metabolic alterations due to hormonal changes. Recently, the literature has demonstrated the role of physical exercise in epigenetic reprogramming to modulate the gene expression patterns of metabolic conditions, such as hyperglycemia, and prevent DM development. In the present study, we hypothesized that physical exercise training could modify the epigenetic patterns of women with poor glycemic control. Methods: 48 post-menopause women aged 60.3 ± 4.5 years were divided according to their fasting blood glucose levels into two groups: Prediabetes Group, PG (n=24), and Normal Glucose Group, NGG (n=24). All participants performed 14 weeks of physical exercise three times a week. The Infinium Methylation EPIC BeadChip measured the participants' Different Methylated Regions (DMRs). Results: Before the intervention, the PG group had 12 DMRs compared to NGG. After the intervention, five DMRs remained different. Interestingly, when comparing the PG group before and after training, 118 DMRs were found. The enrichment analysis revealed that the genes were related to different biological functions such as energy metabolism, cell differentiation, and tumor suppression. Conclusion: Physical exercise is a relevant alternative in treating hyperglycemia and preventing DM in post-menopause women with poor glycemic control.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Prediabetic State , Exercise , Female , Humans , Menopause/genetics , Prediabetic State/genetics , Prediabetic State/therapy
13.
Eur J Prev Cardiol ; 29(17): 2183-2199, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-35989414

ABSTRACT

Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.


Subject(s)
Cardiovascular Diseases , Humans , Secondary Prevention , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Exercise
14.
Front Pediatr ; 10: 876803, 2022.
Article in English | MEDLINE | ID: mdl-35722484

ABSTRACT

Background: Understanding underlying mechanisms of neurodevelopmental impairment following preterm birth may enhance opportunities for targeted interventions. We aimed to assess whether placental DNA methylation of selected genes affected early neurological functioning in preterm infants. Methods: We included 43 infants, with gestational age <30 weeks and/or birth weight <1,000 g and placental samples at birth. We selected genes based on their associations with several prenatal conditions that may be related to poor neurodevelopmental outcomes. We determined DNA methylation using pyrosequencing, and neurological functioning at 3 months post-term using Prechtl's General Movement Assessment, including the Motor Optimality Score-Revised (MOS-R). Results: Twenty-four infants had atypical MOS-R, 19 infants had near-optimal MOS-R. We identified differences in average methylation of NR3C1 (encoding for the glucocorticoid receptor) [3.3% (95%-CI: 2.4%-3.9%) for near-optimal vs. 2.3% (95%-CI: 1.7%-3.0%), p = 0.008 for atypical], and at three of the five individual CpG-sites. For EPO, SLC6A3, TLR4, VEGFA, LEP and HSD11B2 we found no differences between the groups. Conclusion: Hypomethylation of NR3C1 in placental tissue is associated with poorer neurological functioning at 3 months post-term in extremely preterm infants. Alleviating stress during pregnancy and its impact on preterm infants and their neurodevelopmental outcomes should be further investigated.

15.
Front Cell Neurosci ; 16: 797588, 2022.
Article in English | MEDLINE | ID: mdl-35496908

ABSTRACT

During adult neurogenesis, neuronal stem cells differentiate into mature neurons that are functionally integrated into the existing network. One hallmark during the late phase of this neurodifferentiation process is the formation of dendritic spines. These morphological specialized structures form the basis of most excitatory synapses in the brain, and are essential for neuronal communication. Additionally, dendritic spines are affected in neurological disorders, such as Alzheimer's disease or schizophrenia. However, the mechanisms underlying spinogenesis, as well as spine pathologies, are poorly understood. Plasticity-related Gene 5 (PRG5), a neuronal transmembrane protein, has previously been linked to spinogenesis in vitro. Here, we analyze endogenous expression of the PRG5 protein in different mouse brain areas, as well as on a subcellular level. We found that native PRG5 is expressed dendritically, and in high abundance in areas characterized by their regenerative capacity, such as the hippocampus and the olfactory bulb. During adult neurogenesis, PRG5 is specifically expressed in a late phase after neuronal cell-fate determination associated with dendritic spine formation. On a subcellular level, we found PRG5 not to be localized at the postsynaptic density, but at the base of the synapse. In addition, we showed that PRG5-induced formation of membrane protrusions is independent from neuronal activity, supporting a possible role in the morphology and stabilization of spines.

17.
Front Nutr ; 9: 785281, 2022.
Article in English | MEDLINE | ID: mdl-35369101

ABSTRACT

Introduction: Nutriepigenetic markers are predictive responses associated with changes in "surrounding" environmental conditions of humans, which may influence metabolic diseases. Although rich in calories, Western diets could be linked with the deficiency of micronutrients, resulting in the downstream of epigenetic and metabolic effects and consequently in obesity. Zinc (Zn) is an essential nutrient associated with distinct biological roles in human health. Despite the importance of Zn in metabolic processes, little is known about the relationship between Zn and epigenetic. Thus, the present study aimed to identify the epigenetic variables associated with Zn daily ingestion (ZnDI) and serum Zinc (ZnS) levels in women with and without obesity. Materials and Methods: This is a case-control, non-randomized, single-center study conducted with 21 women allocated into two groups: control group (CG), composed of 11 women without obesity, and study group (SG), composed of 10 women with obesity. Anthropometric measurements, ZnDI, and ZnS levels were evaluated. Also, leukocyte DNA was extracted for DNA methylation analysis using 450 k Illumina BeadChips. The epigenetic clock was calculated by Horvath method. The chip analysis methylation pipeline (ChAMP) package selected the differentially methylated regions (DMRs). Results: The SG had lower ZnS levels than the CG. Moreover, in SG, the ZnS levels were negatively associated with the epigenetic age acceleration. The DMR analysis revealed 37 DMRs associated with ZnDI and ZnS levels. The DMR of PM20D1 gene was commonly associated with ZnDI and ZnS levels and was hypomethylated in the SG. Conclusion: Our findings provide new information on Zn's modulation of DNA methylation patterns and bring new perspectives for understanding the nutriepigenetic mechanisms in obesity.

18.
Neuropsychopharmacology ; 47(9): 1620-1632, 2022 08.
Article in English | MEDLINE | ID: mdl-35102259

ABSTRACT

Many pregnant women experience symptoms of depression, and are often treated with selective serotonin reuptake inhibitor (SSRI) antidepressants, such as fluoxetine. In utero exposure to SSRIs and maternal depressive symptoms is associated with sex-specific effects on the brain and behavior. However, knowledge about the neurobiological mechanisms underlying these sex differences is limited. In addition, most animal research into developmental SSRI exposure neglects the influence of maternal adversity. Therefore, we used a rat model relevant to depression to investigate the molecular effects of perinatal fluoxetine exposure in male and female juvenile offspring. We performed RNA sequencing and targeted DNA methylation analyses on the prefrontal cortex and basolateral amygdala; key regions of the corticolimbic circuit. Perinatal fluoxetine enhanced myelin-related gene expression in the prefrontal cortex, while inhibiting it in the basolateral amygdala. SSRI exposure and maternal adversity interacted to affect expression of genes such as myelin-associated glycoprotein (Mag) and myelin basic protein (Mbp). We speculate that altered myelination reflects altered brain maturation. In addition, these effects are stronger in males than in females, resembling known behavioral outcomes. Finally, Mag and Mbp expression correlated with DNA methylation, highlighting epigenetic regulation as a potential mechanism for developmental fluoxetine-induced changes in myelination.


Subject(s)
Fluoxetine , Prenatal Exposure Delayed Effects , Animals , Epigenesis, Genetic , Female , Fluoxetine/pharmacology , Gene Expression , Hippocampus , Humans , Male , Myelin Sheath/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Sprague-Dawley , Selective Serotonin Reuptake Inhibitors
19.
J Dev Orig Health Dis ; 13(3): 378-389, 2022 06.
Article in English | MEDLINE | ID: mdl-34325767

ABSTRACT

It is under debate how preferential perfusion of the brain (brain-sparing) in fetal growth restriction (FGR) relates to long-term neurodevelopmental outcome. Epigenetic modification of neurotrophic genes by altered fetal oxygenation may be involved. To explore this theory, we performed a follow-up study of 21 FGR children, in whom we prospectively measured the prenatal cerebroplacental ratio (CPR) with Doppler sonography. At 4 years of age, we tested their neurodevelopmental outcome using the Wechsler Preschool and Primary Scale of Intelligence, the Child Behavior Checklist, and the Behavior Rating Inventory of Executive Function. In addition, we collected their buccal DNA to determine the methylation status at predefined genetic regions within the genes hypoxia-inducible factor-1 alpha (HIF1A), vascular endothelial growth factor A (VEGFA), erythropoietin (EPO), EPO-receptor (EPOR), brain-derived neurotrophic factor (BDNF), and neurotrophic tyrosine kinase, receptor, type 2 (NTRK2) by pyrosequencing. We found that FGR children with fetal brain-sparing (CPR <1, n = 8) demonstrated a trend (0.05 < p < 0.1) toward hypermethylation of HIF1A and VEGFA at their hypoxia-response element (HRE) compared with FGR children without fetal brain-sparing. Moreover, in cases with fetal brain-sparing, we observed statistically significant hypermethylation at a binding site for cyclic adenosine monophophate response element binding protein (CREB) of BDNF promoter exon 4 and hypomethylation at an HRE located within the NTRK2 promoter (both p <0.05). Hypermethylation of VEGFA was associated with a poorer Performance Intelligence Quotient, while hypermethylation of BDNF was associated with better inhibitory self-control (both p <0.05). These results led us to formulate the hypothesis that early oxygen-dependent epigenetic alterations due to hemodynamic alterations in FGR may be associated with altered neurodevelopmental outcome in later life. We recommend further studies to test this hypothesis.


Subject(s)
Brain-Derived Neurotrophic Factor , Fetal Growth Retardation , Brain/diagnostic imaging , Brain-Derived Neurotrophic Factor/genetics , Child Behavior , Child, Preschool , DNA Methylation , Female , Fetal Growth Retardation/genetics , Follow-Up Studies , Humans , Hypoxia , Pregnancy , Vascular Endothelial Growth Factor A
20.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R99-R111, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34874190

ABSTRACT

A prominent health issue nowadays is the COVID-19 pandemic, which poses acute risks to human health. However, the long-term health consequences are largely unknown and cannot be neglected. An especially vulnerable period for infection is pregnancy, when infections could have long-term health effect on the child. Evidence suggests that maternal immune activation (MIA) induced by either bacteria or viruses presents various effects on the offspring, leading to adverse phenotypes in many organ systems. This review compares the mechanisms of bacterial and viral MIA and the possible long-term outcomes for the offspring by summarizing the outcome in animal LPS and Poly I:C models. Both models are activated immune responses mediated by Toll-like receptors. The outcomes for MIA offspring include neurodevelopment, immune response, circulation, metabolism, and reproduction. Some of these changes continue to exist until later life. Besides different doses and batches of LPS and Poly I:C, the injection day, administration route, and also different animal species influence the outcomes. Here, we specifically aim to support colleagues when choosing their animal models for future studies.


Subject(s)
COVID-19/complications , COVID-19/immunology , Lipopolysaccharides/toxicity , Poly I-C/toxicity , Prenatal Exposure Delayed Effects/immunology , SARS-CoV-2 , Bacterial Infections/immunology , Female , Humans , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...